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A theoretical analysis of the static and dynamic magnetic susceptibilities of a frozen moderately concen-
trated ferrocolloid is presented. The freezing of the fluid is assumed to take place in the presence of a constant
external magnetic field. The steric and dipole-dipole interactions between ferroparticles are taken into account.
We have studied the situations when current magnetic field is parallel and normal to the magnetic field applied
during freezing. The influence of interparticle interaction on the real and imaginary parts of initial suscepti-
bility is examined. The analysis of a stochastic resonance in this system is presented and the influence of
interparticle interaction and field applied during freezing on signal-noise ratio is estimated.
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I. INTRODUCTION particles. The particle magnetic moment is constant in its
absolute value. The solvent becomes frozen instantaneously,

Sherefore space arrangement of the particles and orientations

embedded in a solid matrix has ingreased in.rec,tenF Y€2I5t their axes of light magnetization after freezing remain as
(see, for example[1-8]). Ferrocolloid (magnetic liquid  pafore

with frozen solvent is an example of such a system. As soon
as the solvent is frozen, both the space arrangement of fer-
romagnetic particles and orientations of their axes of light
magnetization become fixed. Thus, the static and dynamic Let us denote by the indexes | and Il all physical param-
magnetic susceptibilities of such a system may differ essergters corresponding to the situations before and after solvent
tially from those of ferrocolloid with a solvent in a liquid freezing and use the following designatiossandw; are the

The interest of investigators in systems of dipole particle

II. EQUILIBRIUM SUSCEPTIBILITY

State. unit vectors aligned along the magnetic momestand light
Theoretical analysis of the static magnetization of verymagnetization axis of thgth particle, respectively,a;
dilute magnetic liquids was performed [4] and their dy- =mMH;/T; (J=1,1I), mis the absolute value of the particle

namic response to the external magnetic field was studied ifagnetic moment, anid; andT, are the magnetic field and
[5,6]. Any interparticle interaction was neglected in thesethe absolute temperature in energetic units.

works. However, in many experimental situatiofisr ex- The energy of the magnetic anisotropy of a particle may
ample,[7,8)) this interaction is very significant. be written as usual,
The aim of this work is the strict theoretical analysis of Uy=—Tk(e »)?

the static and dynamic magnetic susceptibilities of frozen

moderately concentrated magnetic fluids, taking into accounwhere x stands for the dimensionless parameter of anisot-

magnetic and steric interparticle interactions. ropy. As long as the solvent is in a liquid state, the equilib-
Consider a system dfl identical spherical ferromagnetic rium N-particle distribution function has a Gibbs form

1 1
1//,([’1, e ,I‘N,el, e ,eN,Vl, P ,VN):ZQXF{<al-zi Q +K|Zi (QVI)Z_ElEij W“j y

Wiij = [Waiij (&, i) + Weij(rip) 1, rig=ri—rj, («h
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z,=f exr{

Herewg; (& ,g,ri;) andwg;(r;;) are the dimensionless potentials of dipole-dipole and steric interparticle interaction and
r is radius vector of the center of theh particle.

We will assume that the effects of interparticle interaction are not great. This allows us to use the method of virial
expansion.

Let us find the equilibrium distribution function any, ... ry,vq, . .. ,wy Of the ferrocolloid being in a liquid state. For
this purpose, we need to integrate EL. over all vectorse . Using the method of virial expansion in a linear approximation
by the Meyer function, we obtain

a.-Eia

1
+K|2i (QVI)Z—EIE;H W”j ];[ drkdqd]}k.

(¢ /ICETIPPI SVIY T J’N):f llfll_k[ dey

1
N—JGXF{(MEQ +KIE (&- Vl) E#J fllj)]._k.[ de
1 (i)
_Zb'§§¢u¢mﬁ1@“
q)(j):q)("j):f exd(e-e)+x(e-)?]dg, 2

O (1]) =0 (v, v vrij):f expl[a- (e+e) ]+ k(8 1)°+(g )’} 1xe € 1)) dgde

fl12(€ .6 ,1ij) = expl —wj;) — 1.

Below we shall consider that in instantaneous freezing of the solvent, vegtors. ry andwv,, ... ,vy become frozen
instantaneously as well. Let us determineNaparticle conditional distribution functiop,, over vectorsg (all vectorsr; and
v; are fixed. Using again the linear approximation by the Meyer functigp, we get

1
+KIIZ (&'VOZ—EZ Wiij |
i 1#]

1
qD”(el, P ,eN|r1, P ,I‘N,vl, P ,VN):Z_“eX a||~2i Q

Z”—fex;{ @, Z g
1
2

n(ij)
1+E¢<umn%”)

Herew,;;, ®,, and{), are determined similar tov;;;, ®,, and{}, in expressiongl) and(2) with replacement;, «,
andx, by T,,, «,, andk,, respectively.

Taking into account Eg42) and(3), we may write the stationary distribution function for the state after the freezing of the
fluid,

(3
1
+Kuz (el'Vi)Z_EZ Wm}H de
i i1#] k

1#]

QS I Vi SRR gV ST () Rl ITl
1 d,(k) 1
”Zl_k[ CI),l,((k)( ;ej Wu)eXF{(auZ € +Ku§i: (Q'Vi)z_zgj Wiij |
Wy = Q|(ij)_ B Q_u(ij). . @

O(HP(j)  Py(i)Py())

Using Eq.(4), it is easy to calculate the average value of veetor
<e>=f ell//ul_k[ dedr,dv.

In the linear approximation by the Meyer functi¢see Appendix A
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(&=(&ot (1,

1 D(v)
<e)o:|:_|f Ju(")#(vv)d%

n
<e>1:§(K1+ Ko+ K3—G(€)o),
|

FI:f¢I(V)dVa J||:feeXF[(a||'e)+K||(e' v)?]de,

*
i2dv1dw;,

:f (1) ((2)
1) @1y (2)

K2:

Q1 drdw,,

fq)l(l)q>|(2) Ju(1)
D,(1)D(2) (1)

)
()
K3: Q|12dV1dV2,

(1)
G|=f QL0 dp,,
Qﬁ12=f eexp{[ay- (et &) ]+ k[ (€1 w1)*+ (& 1) °]}T (€1, &) derdey,
thzf eXp{[aJ'(el+e2)]+KJ[(el'V1)2+(ez‘VZ)Z]}FJ(ellez)deldez:f Q;(12)dry,,

FJ(e1'ez):f fi12(€1,6,r1)dry,

J=11l —N
=1, I, n—v.

HereV is the volume of the systen{g), is the value of The dependencies @&), on «; are shown in Fig. 1. It is
(e) for the system of noninteracting particles, amds the interesting to note that the value ¢é), for a;— is less
numerical concentration of the particles. The expres§idn than unity. This is because the particles axes of light magne-

for (€)q may be obtained from the theory presentedid#],  tization are fixed. This result is due to the assumptign
where somewhat different reasonings were used. >1, k> a).

The effect of the solvent solidification is especially strong
if the particles energy of magnetic anisotropy is high enough, <%
i.e., the strong inequalities,,x;<<1 hold true. Below we 1.0
will consider this situation.

If «;>1, k3> a,a, (J=I1I), then the following
asymptotic expressions can be easily obtained:

ex sha
Fym (am2 SR Yy, ),
Ky a;
K|
Jy=am vshiay-v), (6) Cn
I}

FIG. 1. Equilibrium mean magnetic moment of the particle in
f vih(e; - v)ch(a;- v)dv the dilute colloid as a function of dimensionless current magnetic

_ field. The solid lines correspond tél,||H,, dashed lines to
H,LH,. Numbers of curves are dimensionless fields of solidifica-
fch(a,-v)dv tion a; .

(o=
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Let us determine the momexe) in Eq. (5) taking into Taking into account Eq45)—(7), we come to the follow-
account the terne); describing the interparticle interaction. ing expressions for the components(ej:

First, we need to calculatgé;. Because the particles are
spheres of radiug, the integration in the preceding relation (=B, (e)=anpb,
is to be carried out over the region,>2a. In this region 3
Wg;i=0 andw;; =wyg;; . _ 1 :

,]As known, Jthe spjace integral of the Meyer function with A= 1+8p_y" T+ 2(JL JH)SmZ(P " y|C|“,
dipole-dipole potential depends on the shape of the infinite 8

volume of integratiorj8]. It is shown in[9] that the correct

result may be obtained if this volume is considered as an _

sty e o 0 g i
infinitely long cylinder extended along the current magnetic

field. The symmetry axis of this cylinder crosses the center ) ) .

of one of interacting particle§for example, the first one Here p=nv is the volume concentration of the particles.
Namely, in this situation the magnetic fightifiguring in the ~ The components of the tensor of initial susceptibiliyare
formula of type(5) is equal to the current magnetic field in m2

the region where two considered particles are located. Cal- X|l.L=—=PB). -

culatingK,,K,,K 3, we may equate this current field i, . -ooT '
Calculating the statistical integra| and, thereforeG, in Eq.

(5) (see Appendix Awe may put current field equal td,.

It is impossible to get a short analytical expression for
K,K,,K5 for an arbitrary value of the parametey; . Be-
low, we shall restrict our consideration to the situatiep
<1. Assume that the axi®z is aligned along the fieldH,
and the axi©x lies in the planeH, ,H,, . Let ¢ stands for the
angle betweetd, andH, . In this section we will assume again that the inequalities

In the case¢|, x,;>1, y;,<1, anda, <1, parameterK; K, k>1, andy,; <1 hold true.
andG, may be derived analytically. After some calculations Let f,(e/») be the conditional distribution function over
(see Appendix Bwe obtain the following relations: at fixed v for the frozen systemg;(») is the distribution

function overrv. The mean value of the vecteris

+yC,

3
JL+E(JH—JL)CO§¢

1+8p|

We have obtained the analytical expressid8sin ap-
proximation ¢y, — 0. However, using Eq(5), it is not diffi-
cult to derive numerically the equilibrium susceptibility of
the colloid for any value oty .

IIl. DYNAMIC SUSCEPTIBILITY

Ky, ( 1. 3 .
—~a;8vy,J)| | cofe— =sirfe |J+=J sm2<p},
Fz o 2 72 (e)=fef1(e|v)gl(v)dedv. )
Ky . 1 3 To derive the distribution functiof; we use the Fokker-
szwa“&)y“\]l (Slnzgo—zco§<p JL+§J||COSZ(,D , Planck equation .
|
&fl—gK(f Kup)+ K (FKUy) + (TK2f
| F 1 1 1 2 1
— =8yl ), at
I:I
K X i
Ky =0 (i=2zX), =|ex—|,
2i Je (10)
Ks Ks u(ev)=—T[(a-€)+ K e-vz,
—E=8pyd(@)C) =3 =8pndi(@)C.. (1) e == Tlen (e vyl
| |
uz(e,v)=z Uj(e).
R | ey =+ 2L ()= ()L (a) J
=——-+/ Cthey— —+—= () — Jj() L() |,
! Jjj(er) ' a,2 I IR ! Hereu, is the energy of a single particle taking into ac-
count its interaction with the magnetic field,, and its en-
L) L) ergy of anisotropyU;(e,») is the mean energy of interaction
L= 5| L(a) —cthey+ ——6 between this and thgh particles, and’ is a dissipative co-
JH(aI) 2 4] o’ . . S
! efficient. According to the definition,
~L(ad, ()|, Uj(err)
= i(er,e,rq; e ,v,rjle;,vy)dedwdry;.
; _1_2L(C¥|) ; _L(a,) fwlj( 116 1J)p2( i V) 1j| 1, V1) AL GRLET]
1m0 T gy (11
A m2 Here p, is the conditional binary distribution function of
L) =cthle)— —, v=-—7-a> vy g ,v;,r,; at fixed e, and »;, andwy; is the potential of

(2a)°T,, interparticle interaction.
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Because the particles are hard spheres of radjuhe o, <1 the potentiali; as a function of ca%=(e- ») has two
distance between their centarg has to be larger thana2 minima atf#~0,7, a maximum at9~ /2, and
In the region where,;>2a, we have by the order of value
Wy~ ¥y . Hence, while determinings in the first approxi- U, =uy(6=0)=—T(a+ ),
mation by they, , one may neglect interparticle interaction B N
in the expression fop, and write U-=uy(0=m)=—T(=ay+ ), 17)

1 Un=U(0=72)=-Te, ,
Po(& v, ryjler,v)= vpl(ej Vj), T1>2a,
where @) and @, are the components ak, parallel and
perpendicular tas, respectively.
Taking into account that the plot of the functian(#) has
Here p; is the distribution function of the single particle two deep potential pits and a barrier between them, using the

that does not interact with the other particles. method applied ifi6], we shall seek the solution of E€1L6)
We assume that as long as the system is in a liquid statgq the form

it remains in equilibrium. Then
p1(e )= (ev)ei(v) (13

where ¢,(v) is the distribution function for the single par-
ticle before freezing, and, is the conditional distribution
function overe of this particle after freezing. Repeating the
reasonings of Sec. Il, we come to

p,=0, ry<2a. (12)

Y1=n,(t,»)8(0)+n_(t,v) (60— 7), (18

where §(x) is a delta function and, andn_ are the prob-
abilities for the particle to be in states closefe0 and
=1, respectively.

Repeating the reasonings [@], we come to

d\(v) 1
it = "0, 19 = g n.0ma0) + [ Wa(sia(sids),
where®, andF, are the same as in Eq®) and (5). If k, t
>1, then the asymptotic approximation q(t)=ex;{ L[W+(s)+W(s)]ds),
1
ep1(v)= 17 e ch - v) (15 Up— U
ey Wf‘cfexp( T ) 19
holds true.
It should be noted that the functiofis andg, are deter- Km |2
mined for one particle taking into account interparticle inter- =k 24T/
action, whereag/; and ¢, are calculated neglecting this in-
teraction. d2u,
The Fokker-Planck equation for the functign is ki:d_(a 0,m)=(*a+2k)T,
lﬁl
—DK('lflKul)"‘DK Y1, d2u
1 o
(16) km—_ﬁ( 0= E)_(_CYL+2K||)T.

D=(T.

Equation(16) is too difficult to solve analytically. For its Substituting Egqs(12)—(14) and Eqgs.(18) and (19) into
approximate analysis we may consider that kge>1 and  Eq. (11) gives

_ 1 q)I(Vj)
Uj(E,V)—_vf Fll(eaej)F—l[n+(tan)5(e]_Vj)+nf(tavj)(s(e]_*'vj)]de]dvj
1 )
:_Vf Il(e"]) I( % [n.(t, V]) n_(t, V])]deJdVJ
1 1 q)I(Vj)
:_v87||vj 12712~ 5 (BrxVix+eryvay) “F [N (t,w)—n_(t,¥)]dy;. (20)

Here we use the Cartesian-coordinate system with the@Xisligned alongH, and the axiO X displaced in the plane
(H,,H,)). With the help of Eq(19), we get

L= (e =n, O —n_ O+ [ TW (9~ WL (9 Ja(s)0 21

q(t) q(t)
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Neglecting the values of the order @f,/«, , in linear  wheree. covers the region oé close to=0 and 6=,
approximation iney, , respectively.
! L Substituting Eq(25) into Eq. (23), we obtain
W_(8)=Wi(8)=—ay(s)vz, W-_(S)+W.(s)=—, t
22) n+(t,vj)—n_(t,vj)=th(a|-v)ex;{—;)

1/2

aw
————exp(k))). tay (s t—s
4§T 3’2 Fkn) +8yvvzf il )exr{—)ds.
0 T T
Substituting Eq(22) into Eq.(21), after some simple cal- (26)
culations, gives
¢ Let us assume that the dimensionless figjddepends on
n+(t,vj)—n_(t,uj)=[n+(0,vj)—n_(O,Vj)]exF< — ;) tas
a“(s) t—s a”(t): aOCOSmt.
+vzf exp —|ds. (23 )
o 7 T Now it follows from Eq.(26) that
As follows from Eq.(23), 7 is the characteristic time of n.(t,p)—n_(t,»)
the particle transition over a potential barrieréat /2. The
initial values of n.(0,v) are determined according to the _agv )
conditions preceding solvent freezing. If this state of the sys- (w )2[005{“”’)+ o7 sin(w7) ]
tem is an equilibrium one, then the single-particle condi-
tional distribution function ovee is 1+ wr t
+| th(ey-v)— vzap ———— exp< — —).
_exfd(a-e+«x (e v)?] 1+(w7) T
@i(ew) : (24
D(v) (27)
Using Eq.(24) at x> 1, we get For the timeg> , the second term on the right-hand side
exp+ ay- v) of Eqg. (27) may be neglected. Using the first term in Eq.
m(()y,,):f o de~ _—" (25) (20), taking into account that all particles are identical, in a
- es 2chey-v) thermodynamic limit we have
@y .
uy(e)= E Uj=—8pyy———l[codw7)+ w7 sif(w7)]
1+(w7)?
1 @ ( 1)
Xf VJ'Z ezvjz (exvjx+eyvjy) [n+(t V]) n_ (t VJ)]dVJ (28)

To simplify calculations, we shall consider separately the Substitutingu, from Eq.(29) into Eq.(10), we come to a
situations when the fielth,, is parallel and perpendicular to problem similar to that for a single particle in the effective
H,. dimensionless magnetic field,

a.= ap{coq wt) + B[ cog wt) + wT sin(wt) ]},
Field H, is parallel to H, 30
The coordinate axe®z,0Z and Ox,0X coincide, re- 8p (
spectively. Using Eq(28), the expression for the mean en- B”:ﬁ (a).
ergy of the particle interaction with the other particleg ( +(w)

>1)i ily obtained, . . "
) Is easily obtaine Using Eq.(18), the expression for the conditionally mean

1 ®,(vy) value of vectore at fixed v is

us(e)=—e,ay8 f 1% dw

2(€) & py“l-l—(wr)z 12, 1

(&),=vn.(t,y)—n_(t,v)]. (31)
~— (e ap)8pyy cosat) + wr Sin(“’t)JH(a,l)_ (29 Substituting a,(t) from Eq. (30) to Eq. (26) instead of
1+ (w7)? «;(t) and then the result into E¢31), we come to
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0 ° K 0.25 K
0.25 0.625 1.0 - 0.625 1.0
F!G' 2. _Real(a) and imaginary(b) parts of initial susceptibility FIG. 3. Real(a) and imaginary(b) parts of susceptibility as
vs dimensionless frequenc;zl ¥#=01, 7”:9,'25’ a':.l' I_-IereXr functions of temperaturd =T, at w7y=1, =1, ,=0.1, y’
fg?‘;’as’ﬂe:dgx_" bg]’ﬁ;’}é’;‘riﬂ)’ O?;ffe'éfﬂ' ||§O'II(; L”'i'p —m2I[K(2a)%]=1. Solid lines,p=0.1; dashedp=0.5. Param-
o p=1-o: 9 s S T etersy, ,x; o and figures at curves are the same as in Fig. 2.
(@ — % 11m—( )ZB Jcogwt) Fields H, and H,, are perpendicular to each other
e ,= —(oT CoOS w
’ ( )2 I I Let us align the axe® X andOZ along the fieldH, and
. H,, correspondingly. Using a spherical coordinate system
+w7(1+2B))sin(wt)}. (32 \ith polar axisOX, we may obtain from Eq(28) instead of
The unconditionally mean value of vecteiis Eq. (29
coq wt) + (w7)sin(wt)
<e>=J (€),92(v)dv, (33 ux(e)=—ezap8py 1+ (wn)? Ji(a).
. N : . : (36)
where g, is a distribution function over orientations of

According to the assumptions that before freezing the system Substituting Eq(36) into Eq.(10), we come to the prob-

is in an equilibrium state and the freezing is instantaneoudem concerning a single particle in the effective dimension-
this function is to be equal to the distribution function for the less field,

colloid being in a liquid state. Using the results of Sec. I, we

may obtain approximatel{see Appendix € a.= ap{cog wt) + B, [cog wt) + w7 sin(wt) ]},
37)
~Dy(v) . ®(v) 8pi (
g2(v) = F, +F—| fQ (v,vy)dw;— F—IGI - Bl:mh(m)-
(34)
. . . . . Repeating the foregoing reasonings, we obtain
When the strong inequality,>1 is valid, one may obtain
the following estimations: (e)=(ez)=ag[ B] cog wt)+ B/ sin(wt)],
QF (v, v)dr ;o () 1-(w7)?
j I e ﬁL:L—IZ 1+8p| vud (@) ———=+v7C. ||,
5 1+(w7) 1+ (w7)
Ly SR (39)
2 & K
XT'{ch - (v+vy)]—ch e (v—w1)]}. Bl = il 1+8p 7||J¢(a|)L+ nC.
1+ (w7)? 1+ (w7)?

Substituting Eqs(32) and(34) into Eq.(33), we come to
The plots of 3| and 8/ versu3w are given in Fig. 2.

(€)= ayl Bjicoq wt) + B{sin(wt) ], The realy} and imaginaryy; parts of initial susceptibility
@ (o2 may be written as
, H l1- (w7 )
Bj= 1+8p| vidj(a)———+%C ”, m’p mp ,
" 1+(w7)? ! 1+(w7)? ! Xi= KIIBJ' X5= PrEaLS
(39
. JII( a) 2 K=«k;T;=const, J=||,L.
B|=ot 1+8p ?’||J||(01|)—2+7|C|\ . . .
1+(w7)? +(w7) The temperature dependenciesy@fandy, susceptibility

components are given in Fig. 3. The redl and imaginary
The dependencies ¢ andgj| from o are given in Fig.  x” parts of the initial susceptibility as functions fhave

2. For this situation an increase of interparticle interactionmaxima. These maxima occur due to a competition between
leads to an increase (ﬁﬁ maximum and to a decrease of two factors. First, the relaxation timegrows with decreas-
frequency corresponding to this maximum. ing temperature. This leads to a decreasgof Second, a
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FIG. 4. Real(a) and imaginary(b) parts of susceptibilities as FIG. 5. Signal-noise ratio vs temperaturd=T,) at w7g
functions of ¢ at ¥,=0.1,,=0.5T,/K=05w75=0.1. Solid =0.1,5)=0.1,y'=0.25. (8) ey=1: solid lines, p=0; dashed,p
lines, p=0.1; dashedp=0.5. Parameterg, ,x; .7 and figures at =0.5.(b) p=0.5: solid lines=0.5; dashedg;=1. Numbering of
curves are the same as in Fig. 2. the curves are the same as in Figs. 2—4.

decrease of temperature results in an increase of coupling Determine the signal-noise ratio as usual,
between the particle magnetic moment and external field.

This leads to an increase gf. The interparticle interaction 7 m2H3,
raises bothy| " ., and temperatures corresponding to Ry=5 ———womol s(xy),
[lLo X||.L> p p g 2 K2

their maxima.

The dependencies off| , and (|, on solidification di- 2| B5(wo)|2
mensionless fieldy are shown in Fig. 4. The components of J:u, (40)
X|| increase and the components pf decrease ag, in- Bi(wg)" g
creases.

It should be mentioned that the expressi@Bs) and(38) 4K
for B and 8| at w=0 coincide with those fog| andg, in To=ﬁy J=||,L.
Eqg. (8) provided that the angle=0, (H|||H,) and o= /2
(HiLHy), respectively. HereK is a constant of the particle magnetic anisotropy.

Let
IV. STOCHASTIC RESONANCE
2

The stochastic resonan¢8R) consists in the coherent Y= m =Ky,
response of a multistable system to a driven periodic signal. (2a)°T,,
The description of this phenomenon in various physical sys- (41)
tems may be found if9—11]. Theoretical investigations of m?
SR in a very dilute systems of single-domain magnetic par- = (2a)°K

ticles embedded in a solid matrix have been carried out in
[5,6]. Our results for dynamic susceptibility of the frozen
ferrocolloid allow us to evaluate the effect of magnetic inter-
particle interaction on the SR in these systems.

Let e; be the component of vectaralong the fieldH,, .
Its absolute value depends periodically brwith angular
frequencyw, and

Substituting Eq(41) into Eg.(40), we may consider; as
a function of T, /K at other fixed physical parameters of the
system and temperature of freezing being equdl,to

The results of calculations df, are given in Fig. 5. It is
easy to see that; as a function ofT;, have maxima. An
increase of interparticle interaction leads to an increase of
1 = both components of; and to a decrease of temperature,
S(w)= _f (es(t)ez(t+s))expiws)ds corresponding to their maxima. The increase of solidification

27 ) field @ causes an increase bf and a decrease df . All

other parameters of the system being e 1, .
is the spectral density function. P Y 9 ealyphl,

This function may be calculated with the help of expres-
sion (26). However, fora; <1 it will be easier to use the
general theory of linear response and the fluctuation- The results obtained evidence that the dipole-dipole inter-
dissipation theorem. According to this theorem, action increases the initial susceptibility of the frozen ferro-

1 g colloid if the current magnetic fieltl, is parallel to the field

J applied during freezingd,. If H,, is parallel toH,, then at
S(w)ziang(w)lZ&(w_wOHE’ sr%gll valuesgofH| thi?linteratl:ltionpleads to aln increase,
(399 whereas at strondl, it leads to a decrease of susceptibility.
J=|,L, |B;|2=(B})*+(B85)2. The maximay,, of the imaginary parts of the dynamic
susceptibilitiesy and x, as functions of the current field

The first term in this equation fd8(w) describes the lin- frequencyw increase and the corresponding frequenaigs
ear response of the system to an external periodic signal; theecrease as dipole-dipole interparticle interaction increases;
second one arises due to thermal noise. the components of are the increasing functions of the

V. CONCLUSIONS AND DISCUSSIONS
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freezing fieldH,; the components of, , on the contrary, tion by multiplying py; and the dimensionless current field
decrease. «, . However, the method of virial expansion used in Sec. Il

The real partsy|| and x| of the susceptibilities as func- allows us to receive strict results for any valueagf. In this
tions of temperature have maxima. The occurrence of thesgituation one may calculate the paramet€isK in Eq. (5)
maxima is the result of Competition between an increase olﬁumerically to determine the Stationary magnetization. It is
the average magnetic moment of the particle and the growtAot a difficult problem. At the same time, solving kinetic
of relaxation timer as the temperature decreases. The firsequation(10) in the nonlinear approximation bs, is con-
factor leads to an increase gf, the second one to a de- hected with some principal difficulties. For this reason we
crease. decided to present here both methods of calculation of sus-

If the linear approximation by the current field, holds ~ ceptibilities.
well, then the stochastic resonance in a moderately concen-
trated frozen ferrocolloid has the same principal characteris-
tics as those in dilute systems.

At the same time, the parameters of signal-noise fiatio  This work was supported by the Russian Basic Research
andl, corresponding to parallel and perpendicular orienta+gundation under Grant Nos. 96-15-96904 and 98-01-00031.
tions of the curren;, and applied during freezing, mag-
netic fields, increase with the parameters of interparticle
magnetodipole interactiorlj increases antl, decreases as APPENDIX A
the fieldH, increases.

We have performed our calculations of magnetic suscep-
tibilities in Secs. Il and Il by using two different methods.  According to the definition and taking into account ex-
Both methods lead to identical results in linear approxima-jpression(4), we have
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Derivation of Expressions(5)

(e):f e’/ful_k[ dedr, dy

:%J ]_k[ w(ﬂgz Wij)elex;{(a,,-z e

1
||(k) & J +K||; (ej'Vj)2+ 52 WIIij:|1_|[ der|dV|.

i#]

Consider the integral

1
+K||2 (ej'Vj)2+§2 ijh_[ de
] 1#] |

sz elex;{(a,,-; e

and let

Qlllj:f efirjexpllay - (er+¢)]+xy[(er- V1)2+(ej : Vj)z]}deldej .

Then

1

1=3,(w) [ ] ‘1)||(Vk)+§2, fuyjerexp(ij)dede X H Dy (1)
k#1 %] k#1,]

=3,(w) 1 q)II(Vk)+2 quljelexﬁlj)delde] H Dy ()
k#1 j#£1 k#1,

1
5. S | tuyexindeded o IT @yom
i#j,0,j#1 k#1,,]j
B Qi j . E Quij )
_J”(Vl)kl;[l ®u(mo 1+j§'1 JII(V1)¢II(VJ)+2i#j,El#i,j Dy ()P (v))’

exp; =exp{[ @y - (e + )]+ xy[ (e v) %+ (g ))?]}.

Using this expression, we may obtain

1 D (1) Qllij Oy 1 Quij )
<e>‘F.fJ"("l)kE11H <I>..(V|)< 2 S Ba ) 24 Ba(rBa(v) 225 B Brv) )
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In the same approximation

1N(N-1) G
—_yNEN
2=V 15— =

G|:f Q|12dV1dV2dr121 F|:f (I)|(V)d1/.

Using these expressions and neglecting the potential of interparticle interagtiowe come to

1 v)
<e>0:|:_|f ||(V)q)l(()

Then in a linear approximation by the Meyer function, taking into account the identity of all particles in a thermodynamical
limit, we get

_ _n Dy(v1)D(v2)
(6)1=(e) — (&)~ F_IZ(IWinzdrldelde

[ du(wy) Ji(vy) Dy(v)Py(v2)
f Dy (v )Qllzdrlzdvldv2 fq’n(”l) q)”(vl)(bu(yz)Q||12dr12dv1dv2—G|<6)o).

From the last two expressions we may easily obtain the forrfh)la

APPENDIX B 1
V(e ,e)=—2m 17857 — = (e1xErx+€e1ve
Calculation of the Parameters K;, K,, Kj, and G, ier,€) f( 1z2=2z 2( IxEex T =1y ZY))

We shall use designationg,=m?/[(2a)3T;], J=1,lI.

sin
For y;<1, one may expand the exponent in the Meyer X (3 cos6— 1)—g-dodR.
function f;;, [see Eq.(2)] by the powers of potential of
dipo[e—dipole interparticle interactiowy. In the linear ap- At first, it is necessary to perform integration over the
proximation angled at fixedR and then to integrate ové (the integrat-
ing volume is the above-mentioned cylingleTaking into
lez— u(elrlz)(ezrlz) (€18) account that the particles are rigid spheres, one may obtain
T, r12 rfz the following expressions for the region of integration over
.
Using this approximation, let us calculdfg in Eq. (5). It
is convenient to write Os#f#=arcsirkR, w—arcsirRsfdsw if R<1,
)= yy(2a)°¥;, O<sfosnw if R>1.
(91§ (&8 (e&)) 4 After simple calculations,
V(e )= : 5| d°¢,
¢ ¢ 41 1
\I’J:? elzezz_i(elxezx“‘ e1vezy) |-
12
§= 54
Therefore,

For the reasons mentioned under the expres&ipnwe 1

need to integrate over an infinite cylinder with the axis di- T _ (
X e,8,)=28 €1768:7— = (e1xeaxt+ e1ve .

rected along the vecta; and crossing the center of one of 381:8) =8yav| L1787 2( 1xE2xt E1v€oy)
the interacting particlegfor example, the first one (B1)

One may use fo€ a coordinate system wheraR is the
distance between a point in space and the cylinder @xis, If x;>1, then
the angle between radius vector of this point and this axis, exti )
and ¢ is the polar angle in plane normal tg . For vectory

ex e 2 o(e—v)+ (et v)]. B2

we will use the Cartesian-coordinate system with the axis explr(e-v)%)~2m K} [o(e=w)+ (et )] (B2)
OZ aligned witha; .

Using these coordinate systems, we come to Therefore ata;; <1,
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e e
O (v)~4m Xrlfkl)ch(aq-v), (B3) Iy(v)~dm X[’fllf”)v(au.v).
exp(«) Taking account of
Oy (v)~4m ) _ Ly, —y. )= — _
K [3(X1,%2) =T 3( =X, =Xo) = = T'5(Xq, = X3)
=—T"5(—X%q,%5)
F|%(4W)ZMM, _ J 172 _ _
o) and expressiofiB2), one may easily obtain
|
R exp(2«;)
Q||12*(47T)2%FH(V1aVz)Vl(CYu'Vl),
J
Qr12~(4ﬂ_)zexi§’<l) (1.7 CH“I'(V1+VZ)];CI{CVI’(Vl_VZ)] (B4)
|
0y12~0.

Now we may deriveK;,K,,K3. In the process of these calculations it is necessary to suggestjbady, . Let us
introduce the Cartesian-coordinate system with &asdirected alongy, and axisOx located in the planed; , ;).

Let ¢ be the angle betwee®Z and Oz (i.e., betweena; and «;). Using the ordering correlations between vector
components after rotation of coordinate system and(Bidj), one obtain

1

Ly(vy,v)=8yv ( VizV27— Elesz) coge

1

: 3 .
+ ViyVox— EVIZVZZ) S|n2(P+§(V1XV22+ V2XV12)S|n @ COS¢|— EvlyVZy . (BS)

Substituting this expression in E¢p), after simple calculations we obtain EJ).
At the calculations of5, one needs to suggea= a;, i.e.,OZ=0z. Substituting Eqs(B2) and(B4) in Eq. (5), we come
to expression(7) for G, .

APPENDIX C

Using the expressiofR), we have

gZ(Vl):f gi(ra, - NP, - VN)H drkH dwy

all k

Zj P()D()) alrk

i( %2 () )H (0] arJ1 dn,

1 1
( (1)VNFN+E f (1)) dr g;dw VNTIREN T 2+2 S Qij)drydudy VN IEN
i#j,

ij#1

vNFP/ (N— 1)(N 2)
= ZI \ I Vszﬂllz fQ|23dV2dV3 .
Taking into account that
G|:J’ Qr”dV,dVJ y
1 N(N-1) G,
~ENyN N =
Z~FIVN 145 — =3t

_N
n=v

[see Eq.(5) and Appendix B in the thermodynamical limit we come to the expressig4).
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