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A theoretical analysis of the static and dynamic magnetic susceptibilities of a frozen moderately concen-
trated ferrocolloid is presented. The freezing of the fluid is assumed to take place in the presence of a constant
external magnetic field. The steric and dipole-dipole interactions between ferroparticles are taken into account.
We have studied the situations when current magnetic field is parallel and normal to the magnetic field applied
during freezing. The influence of interparticle interaction on the real and imaginary parts of initial suscepti-
bility is examined. The analysis of a stochastic resonance in this system is presented and the influence of
interparticle interaction and field applied during freezing on signal-noise ratio is estimated.
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I. INTRODUCTION

The interest of investigators in systems of dipole partic
embedded in a solid matrix has increased in recent y
~see, for example,@1–8#!. Ferrocolloid ~magnetic liquid!
with frozen solvent is an example of such a system. As s
as the solvent is frozen, both the space arrangement of
romagnetic particles and orientations of their axes of li
magnetization become fixed. Thus, the static and dyna
magnetic susceptibilities of such a system may differ ess
tially from those of ferrocolloid with a solvent in a liquid
state.

Theoretical analysis of the static magnetization of ve
dilute magnetic liquids was performed in@4# and their dy-
namic response to the external magnetic field was studie
@5,6#. Any interparticle interaction was neglected in the
works. However, in many experimental situations~for ex-
ample,@7,8#! this interaction is very significant.

The aim of this work is the strict theoretical analysis
the static and dynamic magnetic susceptibilities of froz
moderately concentrated magnetic fluids, taking into acco
magnetic and steric interparticle interactions.

Consider a system ofN identical spherical ferromagneti
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particles. The particle magnetic moment is constant in
absolute value. The solvent becomes frozen instantaneo
therefore space arrangement of the particles and orienta
of their axes of light magnetization after freezing remain
before.

II. EQUILIBRIUM SUSCEPTIBILITY

Let us denote by the indexes I and II all physical para
eters corresponding to the situations before and after sol
freezing and use the following designations:ej andnj are the
unit vectors aligned along the magnetic momentmj and light
magnetization axis of thejth particle, respectively,aJ
5mHJ /TJ (J5I, II), m is the absolute value of the particl
magnetic moment, andHJ andTJ are the magnetic field and
the absolute temperature in energetic units.

The energy of the magnetic anisotropy of a particle m
be written as usual,

ua52Tk~e•n!2,

where k stands for the dimensionless parameter of anis
ropy. As long as the solvent is in a liquid state, the equil
rium N-particle distribution function has a Gibbs form
c I~r1 , . . . ,rN ,e1 , . . . ,eN ,n1 , . . . ,nN!5
1

ZI
expF S aI•(

i
ei D 1k I(

i
~ei•ni !

22
1

2(iÞ j
wIi j G ,

wIi j 5@wdIi j ~ei ,ej ,r i j !1wsi j~r i j !#, r i j 5r i2r j , ~1!
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ZI5E expF S aI•(
i

ei D 1k I(
i

~ei•ni !
22

1

2(iÞ j
wIi j G)

k
dr kdekdnk .

HerewdIi j (ei ,ej ,r i j ) andwsi j(r i j ) are the dimensionless potentials of dipole-dipole and steric interparticle interactio
r k is radius vector of the center of thekth particle.

We will assume that the effects of interparticle interaction are not great. This allows us to use the method o
expansion.

Let us find the equilibrium distribution function onr1 , . . . ,rN ,n1 , . . . ,nN of the ferrocolloid being in a liquid state. Fo
this purpose, we need to integrate Eq.~1! over all vectorsei . Using the method of virial expansion in a linear approximati
by the Meyer function, we obtain

gI~r 1, . . . ,rN ,n1 , . . . ,nN!5E c I)
k

dek

'
1

ZI
E expF S aI•(

i
ei D 1k I(

i
~ei•ni !

2G S 11
1

2 (
iÞ j

f Ii j D)
k

dek

5
1

ZI
S 11

1

2 (
iÞ j

V I~ i j !

F~ i !F~ j ! D)k
F I~k!,

F~ j !5F~nj !5E exp@~aI•ei!1k I~ei•ni !
2#dej , ~2!

V I~ i j !5V I~ni ,nj ,r i j !5E exp$@aI•~ei1ej !#1k I@~ei•ni !
21~ej•nj !

2#% f I12~ei ,ej ,r i j !deidej ,

f I12~ei ,ej ,r i j !5exp~2wIi j !21.

Below we shall consider that in instantaneous freezing of the solvent, vectorsr1 , . . . ,rN andn1 , . . . ,nN become frozen
instantaneously as well. Let us determine anN-particle conditional distribution functionw II over vectorsej ~all vectorsr j and
nj are fixed!. Using again the linear approximation by the Meyer functionf Ii j , we get

w II~e1 , . . . ,eNur1 , . . . ,rN ,n1 , . . . ,nN!5
1

ZII
expF S aII•(

i
ei D 1k II(

i
~ei•ni !

22
1

2 (
iÞ j

wII i j G ,
~3!

ZII5E expF S aII•(
i

eiD 1k II(
i

~ei•ni !
22

1

2 (
iÞ j

wII i j G)
k

dek

'S 11
1

2 (
iÞ j

V II~ i j !

F II~ i !F II~ j !)k
F II~k! D .

HerewII i j , F II , andV II are determined similar towIi j , F I , andV I in expressions~1! and~2! with replacementTI , aI ,
andk I by TII , aII , andk II , respectively.

Taking into account Eqs.~2! and~3!, we may write the stationary distribution function for the state after the freezing o
fluid,

c II~e1 , . . . ,eN ,r1 , . . . ,rN ,n1 , . . . ,nN!5gIw II

'
1

ZI
)

k

F I~k!

F II~k!S 11
1

2 (
iÞ j

Wi j D expF S aII(
i

ei D 1k II(
i

~ei•ni !
22

1

2 (
iÞ j

wII i j G ,
Wi j 5

V I~ i j !

F I~ i !F I~ j !
2

V II~ i j !

F II~ i !F II~ j !
. ~4!

Using Eq.~4!, it is easy to calculate the average value of vectore,

^e&5E e1c II)
k

dekdr kdnk .

In the linear approximation by the Meyer function~see Appendix A!,
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^e&5^e&01^e&1 ,

^e&05
1

F I
E JII~n!

F I~n!

F II~n!
dn,

^e&15
n

F I
2 ~K11K21K32GI^e&0!,

F I5E F I~n!dn, JII5E e exp@~aII•e!1k II~e•n!2#de,

K15E F I~1!F I~2!

F II~1!F II~2!
QII12

! dn1dn2 ,

K25E F I~1!F I~2!

F II~1!F II~2!

JII~1!

F II~1!
V II12

! dn1dn2 ,

~5!

K35E JII~1!

F II~1!
V I12

! dn1dn2 ,

GI5E V I12
! dn1dn2 ,

QII12
! 5E e exp$@aII•~e11e2!#1k II@~e1•n1!21~e2•n2!2#%G II~e1 ,e2!de1de2 ,

VJ12
! 5E exp$@aJ•~e11e2!#1kJ@~e1•n1!21~e2•n2!2#%GJ~e1 ,e2!de1de25E VJ~12!dr12,

GJ~e1 ,e2!5E f J12~e1 ,e2 ,r12!dr12,

J5I, II, n5
N

V
.

ng
gh

ne-

in
etic

a-
HereV is the volume of the system,^e&0 is the value of
^e& for the system of noninteracting particles, andn is the
numerical concentration of the particles. The expression~5!
for ^e&0 may be obtained from the theory presented in@3,4#,
where somewhat different reasonings were used.

The effect of the solvent solidification is especially stro
if the particles energy of magnetic anisotropy is high enou
i.e., the strong inequalitiesk I ,k II!1 hold true. Below we
will consider this situation.

If kJ@1, kJ@a I ,a II (J5I,II), then the following
asymptotic expressions can be easily obtained:

FJ5~4p!2
exp~kJ!

kJ

shaJ

aJ
, FJ~n!54pch~aJ•n!,

JII54p
k II

k II
nsh~aII•n!, ~6!

^e&05

E nth~aII•n!ch~aI•n!dn

E ch~aI•n!dn

.

,

The dependencies of^e&0 on aII are shown in Fig. 1. It is
interesting to note that the value of^e&0 for aII→` is less
than unity. This is because the particles axes of light mag
tization are fixed. This result is due to the assumptionk I
@1, k I@aI .

FIG. 1. Equilibrium mean magnetic moment of the particle
the dilute colloid as a function of dimensionless current magn
field. The solid lines correspond toHIIuuHI , dashed lines to
HII'HI . Numbers of curves are dimensionless fields of solidific
tion aI .
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Let us determine the moment^e& in Eq. ~5! taking into
account the term̂e&1 describing the interparticle interaction

First, we need to calculateGJ . Because the particles ar
spheres of radiusa, the integration in the preceding relatio
is to be carried out over the regionr 12.2a. In this region
wsi j50 andwi j 5wdi j .

As known, the space integral of the Meyer function w
dipole-dipole potential depends on the shape of the infi
volume of integration@8#. It is shown in@9# that the correct
result may be obtained if this volume is considered as
infinitely long cylinder extended along the current magne
field. The symmetry axis of this cylinder crosses the cen
of one of interacting particles~for example, the first one!.
Namely, in this situation the magnetic fieldH figuring in the
formula of type~5! is equal to the current magnetic field
the region where two considered particles are located. C
culatingK1 ,K2 ,K3 , we may equate this current field toHII .
Calculating the statistical integralZI and, therefore,GI in Eq.
~5! ~see Appendix A! we may put current field equal toHI .

It is impossible to get a short analytical expression
K1 ,K2 ,K3 for an arbitrary value of the parameteraII . Be-
low, we shall restrict our consideration to the situationaII
!1. Assume that the axisOz is aligned along the fieldHI
and the axisOx lies in the planeHI ,HII . Let w stands for the
angle betweenHI andHII .

In the casek I , k II@1, g II,1, anda II!1, parametersK i
andGI may be derived analytically. After some calculatio
~see Appendix B! we obtain the following relations:

K1z

F I
2

'a II8vg IIJuuF S cos2w2
1

2
sin2w D Juu1

3

2
J'sin2w G ,

K1x

F I
2

'a II8vg IIJ'F S sin2w2
1

2
cos2w D J'1

3

2
Juucos2wG ,

GI

F I
2

58vg IL
2~aI!,

K2i50 ~ i 5z,x!,

K3z

F I
2

58rg IJuu~aI!Cuu ,
K3x

F I
2

58rg IJ'~aI!C' , ~7!

Cuu5
L~aI!

Juu~aI!
F cthaI2

3

aI
1

6

aI
2

L~aI!2Juu~aI!L~aI!G ,

C'5
L~aI!

Juu~aI!
F1

2S L~aI!2cthaI1
3

aI
26

L~aI!

aI
2 D

2L~aI!J'~aI!G ,

Juu5122
L~aI!

aI
, J'5

L~aI!

aI
,

L~aI!5cth~aI!2
1

aI
, v5

4p

3
a3, g II5

m2

~2a!3TII

.

e

n
c
r

l-

r

Taking into account Eqs.~5!–~7!, we come to the follow-
ing expressions for the components of^e&:

^ez&5aIIzb uu , ^ex&5aIIxb' ,

b uu5JuuH 118rFg IIS Juu1
3

2
~J'2Juu!sin2w D1g ICuuG J ,

~8!

b'5J'H 118rFg IIS J'1
3

2
~Juu2J'!cos2w D1g IC'G J .

Herer5nv is the volume concentration of the particle
The components of the tensor of initial susceptibilityx are

x uu,'5
m2

vTII
rb uu,' .

We have obtained the analytical expressions~8! in ap-
proximationaII→0. However, using Eq.~5!, it is not diffi-
cult to derive numerically the equilibrium susceptibility o
the colloid for any value ofaII .

III. DYNAMIC SUSCEPTIBILITY

In this section we will assume again that the inequalit
k I ,k II@1, andg II,1 hold true.

Let f 1(eun) be the conditional distribution function overe
at fixed n for the frozen system;g1(n) is the distribution
function overn. The mean value of the vectore is

^e&5E ef 1~eun!g1~n!de dn. ~9!

To derive the distribution functionf 1 we use the Fokker-
Planck equation

] f 1

]t
5zK ~ f 1Ku1!1zK ~ f 1Ku2!1zTK2f 1 ,

K5Fe3
]

]eG ,
~10!

u1~e,n!52T@~aII•e!1k II~e•n!2#,

u2~e,n!5(
j

U j~e,n!.

Hereu1 is the energy of a single particle taking into a
count its interaction with the magnetic fieldHII and its en-
ergy of anisotropy,U j (e,n) is the mean energy of interactio
between this and thejth particles, andz is a dissipative co-
efficient. According to the definition,

U j~e1 ,n1!

5E w1 j~e1 ,ej ,r1 j !p2~ej ,nj ,r1 j ue1 ,n1!dejdnjdr1 j .

~11!

Herep2 is the conditional binary distribution function o
ej ,nj ,r1 j at fixed e1 and n1 , and w1 j is the potential of
interparticle interaction.
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Because the particles are hard spheres of radiusa, the
distance between their centersr 1 j has to be larger than 2a.
In the region wherer 1 j.2a, we have by the order of valu
w1 j;g II . Hence, while determiningu2 in the first approxi-
mation by theg II , one may neglect interparticle interactio
in the expression forp2 and write

p2~ej ,nj ,r1 j ue1 ,n1!5
1

V
p1~ej ,nj !, r 1 j.2a,

~12!
p250, r 1 j,2a.

Here p1 is the distribution function of the single particl
that does not interact with the other particles.

We assume that as long as the system is in a liquid s
it remains in equilibrium. Then

p1~e,n!5c1~eun!w1~n!, ~13!

wherew1(n) is the distribution function for the single pa
ticle before freezing, andc1 is the conditional distribution
function overe of this particle after freezing. Repeating th
reasonings of Sec. II, we come to

w1~n!5
F I~n!

F I
, ~14!

whereF I and F I are the same as in Eqs.~2! and ~5!. If k I
.1, then the asymptotic approximation

w1~n!5
1

4p

aI

sh~aI!
ch~aI•n! ~15!

holds true.
It should be noted that the functionsf 1 andg1 are deter-

mined for one particle taking into account interparticle int
action, whereasc1 andw1 are calculated neglecting this in
teraction.

The Fokker-Planck equation for the functionc1 is

]c1

]t
5DK ~c1Ku1!1DK2c1 ,

~16!
D5zT.

Equation~16! is too difficult to solve analytically. For its
approximate analysis we may consider that fork II@1 and
te,

-

a II!1 the potentialu1 as a function of cosu5(e•n) has two
minima atu'0,p, a maximum atu'p/2, and

u15u1~u50!52T~auu1k II !,

u25u1~u5p!52T~2auu1k II !, ~17!

um5u1~u5p/2!52Ta' ,

where auu and a' are the components ofaII parallel and
perpendicular ton, respectively.

Taking into account that the plot of the functionu1(u) has
two deep potential pits and a barrier between them, using
method applied in@6#, we shall seek the solution of Eq.~16!
in the form

c15n1~ t,n!d~u!1n2~ t,n!d~u2p!, ~18!

whered(x) is a delta function andn1 andn2 are the prob-
abilities for the particle to be in states close tou50 andu
5p1, respectively.

Repeating the reasonings of@6#, we come to

n6~ t,n!5
1

q~ t !Fn6~0,n!q~0!1E
0

t

W7~s!q~s!dsG ,
q~ t !5expS E

0

t

@W1~s!1W2~s!#dsD ,

W65c6expS 2
um2u6

T D ,

c65zk6S km

2pTD 1/2

,

~19!

k65
d2u1

du2
~u50,p!5~6auu12k II !T,

km52
d2u1

du2 S u5
p

2 D5~2a'12k II !T.

Substituting Eqs.~12!–~14! and Eqs.~18! and ~19! into
Eq. ~11! gives
U j~e,n!52
1

VE G II~e,ej !
F I~nj !

F I
@n1~ t,nj !d~ej2nj !1n2~ t,nj !d~ej1nj !#dejdnj

52
1

VE G II~e,nj !
F I~nj !

F I
@n1~ t,nj !2n2~ t,nj !#dejdnj

52
1

V
8g IIvE S e1Zn1Z2

1

2
~e1Xn1X1e1Yn1Y! DF I~nj !

F I
@n1~ t,nj !2n2~ t,nj !#dnj . ~20!

Here we use the Cartesian-coordinate system with the axisOZ aligned alongHII and the axisOX displaced in the plane
(HI ,HII). With the help of Eq.~19!, we get

n1~ t,nj !2n2~ t,nj !5n1~0,nj !2n2~0,nj !
q~0!

q~ t !
1

1

q~ t !E0

t

@W2~s!2W1~s!#q~s!ds. ~21!
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Neglecting the values of the order ofaII /k II , in linear
approximation inaII ,

W2~s!2W1~s!5
1

t
aII~s!nZ , W2~s!1W1~s!5

1

t
,

~22!

t5
p1/2

4zTk II
3/2

exp~k II !.

Substituting Eq.~22! into Eq.~21!, after some simple cal
culations, gives

n1~ t,nj !2n2~ t,nj !5@n1~0,nj !2n2~0,nj !#expS 2
t

t D
1nZE

0

taII~s!

t
expS t2s

t Dds. ~23!

As follows from Eq.~23!, t is the characteristic time o
the particle transition over a potential barrier atu5p/2. The
initial values of n6(0,n) are determined according to th
conditions preceding solvent freezing. If this state of the s
tem is an equilibrium one, then the single-particle con
tional distribution function overe is

w I~eun!5
exp@~aI•e!1k I~e•n!2#

F I~n!
. ~24!

Using Eq.~24! at k I@1, we get

n6~0,n!5E
e6

w Ide'
exp~6aI•n!

2ch~aI•n!
, ~25!
th
o

n-
-
-

wheree6 covers the region ofe close tou50 andu5p,
respectively.

Substituting Eq.~25! into Eq. ~23!, we obtain

n1~ t,nj !2n2~ t,nj !5th~aI•n!expS 2
t

t D
18gvnZE

0

taII~s!

t
expS t2s

t Dds.

~26!

Let us assume that the dimensionless fieldaII depends on
t as

aII~ t !5a0cosvt.

Now it follows from Eq.~26! that

n1~ t,n!2n2~ t,n!

5
a0nZ

11~vt!2
@cos~vt!1vt sin~vt!#

1S th~aI•n!2nZa0

11vt

11~vt!2D expS 2
t

t D .

~27!

For the timest@t, the second term on the right-hand sid
of Eq. ~27! may be neglected. Using the first term in E
~20!, taking into account that all particles are identical, in
thermodynamic limit we have
u2~e!5(
j

U j528rg II

a0

11~vt!2
@cos~vt!1vt sin~vt!#

3E njZS eZnjZ2
1

2
~eXnjX1eYnjY! DF I~n1!

F I
@n1~ t,nj !2n2~ t,nj !#dnj . ~28!
e

n

To simplify calculations, we shall consider separately
situations when the fieldHII is parallel and perpendicular t
HI .

Field HII is parallel to HI

The coordinate axesOz,OZ and Ox,OX coincide, re-
spectively. Using Eq.~28!, the expression for the mean e
ergy of the particle interaction with the other particles (k I
@1) is easily obtained,

u2~e!52eza08rg II

1

11~vt!2E n1z
2 F I~n1!

F I
dn1

'2~e•a0!8rg II

cos~vt !1vt sin~vt !

11~vt!2
Juu~aI!. ~29!
e Substitutingu2 from Eq.~29! into Eq.~10!, we come to a
problem similar to that for a single particle in the effectiv
dimensionless magnetic field,

ae5a0$cos~vt !1Buu@cos~vt !1vt sin~vt !#%,

~30!

Buu5
8rg II

11~vt!2
Juu~aI!.

Using Eq.~18!, the expression for the conditionally mea
value of vectore at fixedn is

^e&n5n@n1~ t,n!2n2~ t,n!#. ~31!

Substitutingae(t) from Eq. ~30! to Eq. ~26! instead of
aII(t) and then the result into Eq.~31!, we come to
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^e&n5nnz

a0

11~vt!2
$@11Buu2~vt!2Buu#cos~vt !

1vt~112Buu!sin~vt !%. ~32!

The unconditionally mean value of vectore is

^e&5E ^e&ng2~n!dn, ~33!

where g2 is a distribution function over orientations ofn.
According to the assumptions that before freezing the sys
is in an equilibrium state and the freezing is instantaneo
this function is to be equal to the distribution function for t
colloid being in a liquid state. Using the results of Sec. II, w
may obtain approximately~see Appendix C!

g2~n!5
F I~n!

F I
1

n

F I
S E V!~n,n1!dn12

F I~n!

F I
GID .

~34!

When the strong inequalityk I@1 is valid, one may obtain
the following estimations:

E V I
!~n,n1!dn1

5
1

2
~4p!2S exp~k I!

k I
D 2

3G I$ch@aI•~n1n1!#2ch@aI•~n2n1!#%.

Substituting Eqs.~32! and~34! into Eq. ~33!, we come to

^ez&5a0@b uu8cos~vt !1b uu9sin~vt !#,

b uu85
Juu~aI!

11~vt!2F118rS g IIJuu~aI!
12~vt!2

11~vt!2
1g ICuu D G ,

~35!

b uu95vt
Juu~aI!

11~vt!2F118rS g IIJuu~aI!
2

11~vt!2
1g ICuu D G .

The dependencies ofb uu8 andb uu9 from v are given in Fig.
2. For this situation an increase of interparticle interact
leads to an increase ofb uu9 maximum and to a decrease
frequency corresponding to this maximum.

FIG. 2. Real~a! and imaginary~b! parts of initial susceptibility
vs dimensionless frequency atg I50.1, g II50.5, aI51. Herex r

5gx8, x i5gx9, g5Kv/(m2r), t054zKp1/2. Solid lines, r
50; dashed,r50.5. Numbering of curves: 1,HIIuuHI ; 2, HII'HI .
m
s,

n

Fields HI and HII are perpendicular to each other

Let us align the axesOX andOZ along the fieldsHI and
HII , correspondingly. Using a spherical coordinate syst
with polar axisOX, we may obtain from Eq.~28! instead of
Eq. ~29!

u2~e!52eZa08rg II

cos~vt !1~vt!sin~vt !

11~vt!2
J'~aI!.

~36!

Substituting Eq.~36! into Eq. ~10!, we come to the prob-
lem concerning a single particle in the effective dimensio
less field,

ae5a0$cos~vt !1B'@cos~vt !1vt sin~vt !#%,

~37!

B'5
8rg II

11~vt!2
J'~aI!.

Repeating the foregoing reasonings, we obtain

^ex&5^eZ&5a0@b'8 cos~vt !1b'9 sin~vt !#,

b'8 5
J'~aI!

11~vt!2F118rS g IIJ'~aI!
12~vt!2

11~vt!2
1g IC'D G ,

~38!

b'9 5vt
J'~aI!

11~vt!2F118rS g IIJ'~aI!
2

11~vt!2
1g IC'D G .

The plots ofb'8 andb'9 versusv are given in Fig. 2.
The realxJ8 and imaginaryxJ9 parts of initial susceptibility

may be written as

xJ85
m2r

vK
k IIbJ8 , xJ95

m2r

vK
k II ,bJ9

K5kJTJ5const, J5uu,'.

The temperature dependencies ofx uu andx' susceptibility
components are given in Fig. 3. The realx8 and imaginary
x9 parts of the initial susceptibility as functions ofT have
maxima. These maxima occur due to a competition betw
two factors. First, the relaxation timet grows with decreas-
ing temperature. This leads to a decrease ofx8. Second, a

FIG. 3. Real~a! and imaginary~b! parts of susceptibility as
functions of temperatureT5TII at vt051, aI51, g I50.1, g8
5m2/@K(2a)2#51. Solid lines,r50.1; dashed,r50.5. Param-
etersx r ,x i ,t0 and figures at curves are the same as in Fig. 2.
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decrease of temperature results in an increase of coup
between the particle magnetic moment and external fi
This leads to an increase ofx8. The interparticle interaction
raises bothx uu,'8 , x uu,'9 , and temperatures corresponding
their maxima.

The dependencies ofx uu,'8 and x uu,'9 on solidification di-
mensionless fieldaI are shown in Fig. 4. The components
x uu increase and the components ofx' decrease asaI in-
creases.

It should be mentioned that the expressions~35! and~38!
for b uu8 andb uu9 at v50 coincide with those forb uu andb' in
Eq. ~8! provided that the anglew50, (HIuuHII) andw5p/2
(HI'HII), respectively.

IV. STOCHASTIC RESONANCE

The stochastic resonance~SR! consists in the coheren
response of a multistable system to a driven periodic sig
The description of this phenomenon in various physical s
tems may be found in@9–11#. Theoretical investigations o
SR in a very dilute systems of single-domain magnetic p
ticles embedded in a solid matrix have been carried ou
@5,6#. Our results for dynamic susceptibility of the froze
ferrocolloid allow us to evaluate the effect of magnetic int
particle interaction on the SR in these systems.

Let eZ be the component of vectore along the fieldHII .
Its absolute value depends periodically ont with angular
frequencyv0 and

S~v!5
1

2pE2`

`

^eZ~ t !eZ~ t1s!&exp~ ivs!ds

is the spectral density function.
This function may be calculated with the help of expre

sion ~26!. However, foraII!1 it will be easier to use the
general theory of linear response and the fluctuati
dissipation theorem. According to this theorem,

S~v!5
1

2
a0

2ubJ~v!u2d~v2v0!1
bJ9

pv
,

~39!
J5uu,', ubJu25~bJ8!21~bJ9!2.

The first term in this equation forS(v) describes the lin-
ear response of the system to an external periodic signal
second one arises due to thermal noise.

FIG. 4. Real~a! and imaginary~b! parts of susceptibilities as
functions of aI at g I50.1,g II50.5,TII /K50.5,vt050.1. Solid
lines, r50.1; dashed,r50.5. Parametersx r ,x i ,t0 and figures at
curves are the same as in Fig. 2.
ng
d.

l.
-

r-
in

-

-

-

he

Determine the signal-noise ratio as usual,

RJ5
p

2

m2H0II
2

K2
v0t0I J~k II !,

I J5
k II

2ubJ~v0!u2

bJ~v0!9t0

, ~40!

t05
4zK

p1/2
, J5uu,'.

HereK is a constant of the particle magnetic anisotropy.
Let

g II5
m2

~2a!3TII

5k IIg8,

~41!

g85
m2

~2a!3K
.

Substituting Eq.~41! into Eq.~40!, we may considerI J as
a function ofTII /K at other fixed physical parameters of th
system and temperature of freezing being equal toTI .

The results of calculations ofI J are given in Fig. 5. It is
easy to see thatI J as a function ofTII have maxima. An
increase of interparticle interaction leads to an increase
both components ofI J and to a decrease of temperatur
corresponding to their maxima. The increase of solidificat
field aI causes an increase ofI uu and a decrease ofI' . All
other parameters of the system being equal,I uu.I' .

V. CONCLUSIONS AND DISCUSSIONS

The results obtained evidence that the dipole-dipole in
action increases the initial susceptibility of the frozen fer
colloid if the current magnetic fieldHII is parallel to the field
applied during freezingHI . If HII is parallel toHI, then at
small values ofH I this interaction leads to an increas
whereas at strongH I it leads to a decrease of susceptibilit

The maximaxm9 of the imaginary parts of the dynami
susceptibilitiesx uu and x' as functions of the current field
frequencyv increase and the corresponding frequenciesvm
decrease as dipole-dipole interparticle interaction increa
the components ofx uu are the increasing functions of th

FIG. 5. Signal-noise ratio vs temperature (T5TII) at vt0

50.1,g I50.1,g850.25. ~a! aI51: solid lines, r50; dashed,r
50.5.~b! r50.5: solid lines,aI50.5; dashed,aI51. Numbering of
the curves are the same as in Figs. 2–4.
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freezing fieldH I ; the components ofx' , on the contrary,
decrease.

The real partsx uu8 and x'8 of the susceptibilities as func
tions of temperature have maxima. The occurrence of th
maxima is the result of competition between an increase
the average magnetic moment of the particle and the gro
of relaxation timet as the temperature decreases. The fi
factor leads to an increase ofx8, the second one to a de
crease.

If the linear approximation by the current fieldH II holds
well, then the stochastic resonance in a moderately con
trated frozen ferrocolloid has the same principal characte
tics as those in dilute systems.

At the same time, the parameters of signal-noise ratioI uu
and I' corresponding to parallel and perpendicular orien
tions of the currentHII and applied during freezingHI mag-
netic fields, increase with the parameters of interpart
magnetodipole interaction;I uu increases andI' decreases a
the fieldH I increases.

We have performed our calculations of magnetic susc
tibilities in Secs. II and III by using two different method
Both methods lead to identical results in linear approxim
se
of
th
t

n-
s-

-

e

p-

-

tion by multiplying rgJ and the dimensionless current fie
aII . However, the method of virial expansion used in Sec
allows us to receive strict results for any value ofaII . In this
situation one may calculate the parametersK1 ,K2 in Eq. ~5!
numerically to determine the stationary magnetization. It
not a difficult problem. At the same time, solving kinet
equation~10! in the nonlinear approximation byaII is con-
nected with some principal difficulties. For this reason w
decided to present here both methods of calculation of s
ceptibilities.
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APPENDIX A

Derivation of Expressions„5…

According to the definition and taking into account e
pression~4!, we have
^e&5E ec II)
k

dekdr kdnk

5
1

ZI
E )

k

F I~k!

F II~k!S 11
1

2 (
iÞ j

Wi j D e1expF S aII•(
j

ej D 1k II(
j

~ej•nj !
21

1

2 (
iÞ j

wII i j G)
l

deldr ldnl .

Consider the integral

I 5E e1expF S aII•(
j

ej D 1k II(
j

~ej•nj !
21

1

2(iÞ j
wII i j G)

l
del

and let

QII1 j5E e1f II1 jexp$@aII•~e11ej !#1k II@~e1•n1!21~ej•nj !
2#%de1dej .

Then

I 5JII~n1!)
kÞ1

F II~nk!1
1

2 (
iÞ j

f II1 je1exp~ i j !de1dej3 )
kÞ i , j

F II~nk!

5JII~n1!)
kÞ1

F II~nk!1(
j Þ1

E f II1 je1exp~1 j !de1dej )
kÞ1,j

F II~nk!

1
1

2 (
iÞ j , i , j Þ1

E f II i j exp~ i j !deidejJII~n1! )
kÞ1,i , j

F II~nk!

5JII~n1!)
kÞ1

F II~nk!S 11(
j Þ1

QII1 j

JII~n1!
F II~nj !1

1

2 (
iÞ j ,1Þ i , j

V II i j

F II~ni !F II~nj !
D ,

expi j 5exp$@aII•~e11ej !#1k II@~e1•n1!21~ej•nj !
2#%.

Using this expression, we may obtain

^e&5
1

F I
E JII~n1!)

kÞ1
)
all l

F I~nl !

F II~nl !
S 11(

j Þ1

QII i j
!

JII~n1!F II~nj !
2(

j Þ1

V II1 j

F II~n1!F II~nj !
1

1

2 (
iÞ j

V II i j

F I~ni !F I~nj !
D .
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In the same approximation

ZI5VNF I
NS 11

1

2

N~N21!

V

GI

F I
2D ,

GI5E V I12dn1dn2dr12, F I5E F I~n!dn.

Using these expressions and neglecting the potential of interparticle interactionwi j , we come to

^e&05
1

F I
E JII~n!

F I~n!

F II~n!
dn.

Then in a linear approximation by the Meyer function, taking into account the identity of all particles in a thermodyn
limit, we get

^e&15^e&2^e&0'
n

F I
2S E F I~n1!F I~n2!

F II~n1!F II~n2!
QII12dr12dn1dn2

5E JII~n1!

F II~n1!
V I12dr 12dn1dn22E JII~n1!

F II~n1!

F I~n1!F I~n2!

F II~n1!F II~n2!
V II12dr12dn1dn22GI^e&0D .

From the last two expressions we may easily obtain the formula~5!.
e
f

di
of

xi

x

e

tain
er
APPENDIX B

Calculation of the Parameters K1 , K2 , K3 , and GI

We shall use designationsgJ5m2/@(2a)3TJ#, J5I,II.
For gJ,1, one may expand the exponent in the Mey

function f J12 @see Eq.~2!# by the powers of potential o
dipole-dipole interparticle interactionwd . In the linear ap-
proximation

f J125
m2

TJ
S 3

~e1r12!~e2r12!

r 12
5

2
~e1e2!

r 12
3 D .

Using this approximation, let us calculateGJ in Eq. ~5!. It
is convenient to write

GJ5gJ~2a!3CJ ,

CJ~e1 ,e2!5E
j.1

S 3
~e1j!~e2j!

j5
2

~e1e2!

j3 D d3j,

j5
r12

2a
.

For the reasons mentioned under the expression~7!, we
need to integrate over an infinite cylinder with the axis
rected along the vectoraJ and crossing the center of one
the interacting particles~for example, the first one!.

One may use forj a coordinate system where 2aR is the
distance between a point in space and the cylinder axis,u is
the angle between radius vector of this point and this a
andw is the polar angle in plane normal toaJ . For vectorn
we will use the Cartesian-coordinate system with the a
OZ aligned withaJ .

Using these coordinate systems, we come to
r

-

s,

is

CJ~e1 ,e2!522pE S e1Ze2Z2
1

2
~e1Xe2X1e1Ye2Y! D

3~3 cos2u21!
sinu

R
du dR.

At first, it is necessary to perform integration over th
angleu at fixedR and then to integrate overR ~the integrat-
ing volume is the above-mentioned cylinder!. Taking into
account that the particles are rigid spheres, one may ob
the following expressions for the region of integration ov
u:

0<u<arcsinR, p2arcsinR<u<p if R,1,

0<u<p if R.1.

After simple calculations,

CJ5
4p

3 S e1Ze2Z2
1

2
~e1Xe2X1e1Ye2Y! D .

Therefore,

GJ~e1 ,e2!58gJvS e1Ze2Z2
1

2
~e1Xe2X1e1Ye2Y! D .

~B1!

If kJ@1, then

exp„kJ~e•n!2
…'2p

exp~kJ!

kJ
@d~e2n!1d~e1n!#. ~B2!

Therefore ataII!1,
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F I~n!'4p
exp~k I!

k I
ch~aI•n!, ~B3!

F II~n!'4p
exp~k II !

k II
,

F I'~4p!2
exp~k I!

k I

sh~a I!

a I
,

JII~n!'4p
exp~k II !

k II
n~aII•n!.

Taking account of

GJ~x1 ,x2!5GJ~2x1 ,2x2!52GJ~x1 ,2x2!

52GJ~2x1 ,x2!

and expression~B2!, one may easily obtain
tor
QII12
! '~4p!2

exp~2kJ!

kJ
2

G II~n1 ,n2!n1~aII•n1!,

V I12
! '~4p!2

exp~2k I!

k I
2

G I~n1 ,n2!
ch@aI•~n11n2!#2ch@aI•~n12n2!#

2
, ~B4!

V II12'0.

Now we may deriveK1 ,K2 ,K3 . In the process of these calculations it is necessary to suggest thataJ5aII . Let us
introduce the Cartesian-coordinate system with axisOz directed alongaI and axisOx located in the plane (aI ,aII).

Let w be the angle betweenOZ and Oz ~i.e., betweenaI and aII). Using the ordering correlations between vec
components after rotation of coordinate system and Eq.~B1!, one obtain

G II~n1 ,n2!58g IIvF S n1zn2z2
1

2
n1xn2xD cos2w

1S n1xn2x2
1

2
n1zn2zD sin2w1

3

2
~n1xn2z1n2xn1z!sin w cosw G2

1

2
n1yn2y . ~B5!

Substituting this expression in Eq.~5!, after simple calculations we obtain Eq.~7!.
At the calculations ofGI one needs to suggestaJ5aI , i.e.,OZ5Oz. Substituting Eqs.~B2! and~B4! in Eq. ~5!, we come

to expression~7! for GI .

APPENDIX C

Using the expression~2!, we have

g2~n1!5E gI~r1 , . . . ,rNn1 , . . . ,nN!)
all k

dr k)
kÞ1

dnk

'
1

ZI
S 11

1

2 (
iÞ j

V I~ i j !

F~ i !F~ j ! D)k
F I~k!)

all k
dr k)

kÞ1
dnk

5
1

ZI
S F I~1!VNF I

N1(
j Þ1

E V I~1 j !dr1 jdnjV
N21F I

N221
1

2 (
iÞ j , i , j Þ1

V I~ i j !dr i j dnidnjV
N21F I

N23D
5

VNF I
N

ZI
S F I~1!

F I
1

N21

VFI
2 E V I12

! dn21
~N21!~N22!

2VFI
2 E V I23

! dn2dn3D .

Taking into account that

GI5E V Ii j
! dnidnj ,

ZI'F I
NVNS 11

1

2

N~N21!

V

GI

F I
2D ,

n5
N

V

@see Eq.~5! and Appendix B# in the thermodynamical limit we come to the expression~34!.
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